博客
关于我
tensorflow的variable scope和name scope
阅读量:271 次
发布时间:2019-03-01

本文共 1280 字,大约阅读时间需要 4 分钟。

在tensorflow中有着独特的变量共享机制,不需要传递reference就可以在不同的代码块中共享变量。而这种变量共享机制就是通过variable_scope和name_scope来实现的。

tf.get_variable

这个函数的作用是创建一个新的变量或者在已经创建的变量中检索一个变量。这个函数和tf.Variable有很大区别,后一个每次都会创建一个新的变量(而且如果创建时传入的名字已经存在,会在tensor的name中默认增加后缀进行区分)
在这里插入图片描述

两种scope在创建op和使用tf.Variable创建变量时有着相同的影响(都会在name前加上scope的前缀),但是当使用tf.get_variable时,name_scope将会被忽略。

import tensorflow as tfwith tf.name_scope('test_scope'):    test1=tf.get_variable('test1',[1],dtype=tf.float32)    test2=tf.Variable(1,name='test2',dtype=tf.float32)    a=tf.add(test1,test2)print(test1.name)  #test1:0print(test2.name)  #test_scope/test2:0print(a.name)      #test_scope/Add:0

如果想要一个tf.get_variable创建的变量可以被其他代码块访问,需要使用variable scope:

import tensorflow as tfwith tf.variable_scope('test_scope'):    test1=tf.get_variable('test1',[1],dtype=tf.float32)    test2=tf.Variable(1,name='test2',dtype=tf.float32)    a=tf.add(test1,test2)print(test1.name)  #test_scope/test1:0print(test2.name)  #test_scope/test2:0print(a.name)      #test_scope/Add:0
import tensorflow as tfwith tf.variable_scope('share'):    share=tf.get_variable('share_variable',[1])with tf.variable_scope('share',reuse=True):    share_test=tf.get_variable('share_variable',[1])    print(share.name)        #share/share_variable:0print(share_test.name)   #share/share_variable:0

转载地址:http://vrvx.baihongyu.com/

你可能感兴趣的文章
nacos集群搭建
查看>>
nacos集群网络分区对的影响和运维方式
查看>>
nacos集群节点故障对应用的影响以及应急方法
查看>>
nacos集群配置详解
查看>>
Nagios 3.0 Jumpstart Guide For Linux – Overview, Installation and Configuration
查看>>
nagios 实时监控 iptables 状态
查看>>
WAP短信格式解析及在Linux下用C语言实现
查看>>
nagios+cacti整合
查看>>
Nagios介绍
查看>>
nagios利用NSCient监控远程window主机
查看>>
nagios安装文档
查看>>
nagios服务端安装
查看>>
Nagios自定义监控脚本
查看>>
name_save matlab
查看>>
Nami 项目使用教程
查看>>
Nancy之基于Nancy.Hosting.Aspnet的小Demo
查看>>
NAND NOR FLASH闪存产品概述
查看>>
nano 编辑
查看>>
nanoGPT 教程:从零开始训练语言模型
查看>>
NASA网站曝严重漏洞,或将沦为黑客钓鱼网站?
查看>>